

Advanced Training Course in Cell and Molecular Techniques

Presented by Institute of Biotechnology Ferdowsi University of Mashhad

Summer 2018

Stem Cell Derivation & Characterization Workshop 18-23 August 2018	
Introduction to biotechnology	Duration
Overview of workshops (stem cell derivation and cultivation, induction of stem	
cell differentiation, stem cell characterization by flow cytometry and	
immunostaining)	
Introduction to stem cells	
Practice on cell culture principles; cell passage, freeze and defrost	1 day
Practice on stem cell derivation from rat bone marrow	1 day
Introduction to differentiation and characterization of stem cells	
Inducing differentiation of stem cells toward mesodermal lineages	2 days
Practice on flow cytometry detection of superficial antigens	1 day
Visiting laboratories in Institute of Biotechnology, Faculty of Science, Faculty of	1 day
Veterinary Medicine, Faculty of Agriculture (Ferdowsi University of Mashhad),	
and ACECR, Mashhad	
Group meeting	

Gene Expression Analysis Workshop 25-30 August 2018		
Introduction to biotechnology	Duration	
Overview of workshops (gene expression analysis at mRNA and protein levels)		
Practice on RNA extraction from human cells	1 day	
Principles of quantitative RT-PCR		
Synthesis of cDNA followed by PCR and electrophoresis	1 day	
Real time RT-PCR for quantitative analysis of gene expression	2 days	
Introduction to gene expression analysis at protein level		
Practice on immunohistochemistry	2 days	

Expression Analysis of RNA-seq Data Workshop		
1-3 September 2018		
Introduction to next generation sequencing (NGS)	Duration	
Data input (raw sequence, gene annotation, reference genome)		
Preprocessing (quality control of raw sequence-FastQC, trimming-Trimmomatic,		
indexing of genome reference-Bowtie2)	1 day	
Alignment (Tophat2, BAM/SAM, IGV, RseQC)		
Transcriptome assembly (Cufflinks, Cuffmerge)		
Abundance estimation (Htseq, RPKM, FPKM)	1 day	
Expression analysis (alternative and differential expressions)		
Visualization and gene ontology analysis		
Final reports (quality summery, significant gene, clustering patterns, pathway		
enrichment reports, statistic summery)	1 day	

Outlines of Stem Cell Workshop

- Basic stem cell biology
- 1. General introduction to embryonic and adult stem cells
- 2. *In vitro* maintenance of embryonic stem cells
- 3. Inducing differentiation of embryonic stem cells
- 4. Niche and function of adult stem cells
- 5. In vitro maintenance and differentiation of adult stem cells
- 6. Somatic cell reprogramming
- Applications of stem cells
- 1. Clinical use of stem cells
- 2. Stem cells and cloning
- 3. Claims against therapeutic use of stem cells
- 4. Stem cell theory of cancer
- Challenges to stem cell research
- Stem cell isolation and cultivation
- 1. History of stem cell extraction
- 2. Development of embryonic stem cell cultivation
- 3. Culture conditions of tissue-specific stem cells
- Practice on cell culture principles; cell passage, freeze and defrost
- Practice on mesenchymal stem cell extraction from rat bone marrow
- Inducing differentiation of stem cells toward mesodermal lineages
- Practice on flow cytometry detection of superficial antigens

Outlines of Molecular Analysis Workshop

• Introduction to gene expression analysis

- 1. Basics of PCR and electrophoresis
- 2. PCR chemical components, reverse transcription, housekeeping gene
- 3. Primer design guidelines; primer specificity, length, GC content, 3' end stability, sequence complexity, melting temperature, location in the sequence, amplicon size, cross-exon boundary, primer and template sequence secondary structures
- 4. RT-PCR vs. blotting and microarray

• Basics of real time PCR

- 1. Practical and theoretical principles underlying real-time PCR
- 2. Detection of target DNA by binding dye or specific probes; TaqMan, molecular beacon, scorpion
- 3. Data analysis and reporting
- 4. Standard curve, amplification curve, melting curve, cycle threshold and base line
- 5. Relative and absolute expression analysis
- 6. Normalization standards, dilution method, exponential phase and efficiency calculation
- 7. Advantages and disadvantages
- 8. Applications of quantitative PCR

• Introduction to methods for protein detection

- 1. Principles of immunostaining; sample preparation; embedding and fixation
- 2. Preventing non-specific hydrophobic and ionic interactions
- 3. Antibody characteristics; selection and optimization
- 4. Practical aspects of antigen retrieval and blocking
- 5. Direct and indirect detection of antigen-antibody complex
- 6. Selection of controls; endogenous tissue, background control, no primary antibody control, isotype control, tissue type control
- 7. Problems and pitfalls of immunostaining; advantages and applications
- Antigen detection in paraffin-embedded tissue specimens
- Practice on RNA extraction from human cells
- Synthesis of cDNA followed by PCR and electrophoresis
- Establishing a real time PCR and followed by data analysis
- Practice on immunohistochemistry